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Comparison of two prognostic models in trauma outcome
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Background: The Trauma Audit and Research Network (TARN) in the UK publicly reports hospital
performance in the management of trauma. The TARN risk adjustment model uses a fractional
polynomial transformation of the Injury Severity Score (ISS) as the measure of anatomical injury severity.
The Trauma Mortality Prediction Model (TMPM) is an alternative to ISS; this study compared the
anatomical injury components of the TARN model with the TMPM.
Methods: Data from the National Trauma Data Bank for 2011–2015 were analysed. Probability of death
was estimated for the TARN fractional polynomial transformation of ISS and compared with the TMPM.
The coefficients for each model were estimated using 80 per cent of the data set, selected randomly. The
remaining 20 per cent of the data were used for model validation. TMPM and TARN were compared
using calibration curves, measures of discrimination (area under receiver operating characteristic curves;
AUROC), proximity to the true model (Akaike information criterion; AIC) and goodness of model fit
(Hosmer–Lemeshow test).
Results: Some 438 058 patient records were analysed. TMPM demonstrated preferable AUROC (0⋅882
for TMPM versus 0⋅845 for TARN), AIC (18 204 versus 21 163) and better fit to the data (32⋅4 versus

153⋅0) compared with TARN.
Conclusion: TMPM had greater discrimination, proximity to the true model and goodness-of-fit than
the anatomical injury component of TARN. TMPM should be considered for the injury severity measure
for the comparative assessment of trauma centres.
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Introduction

The need for valid and reliable performance measures is
vital as healthcare commissioners, patients and accredit-
ing bodies compare outcomes among hospitals or physi-
cians. For trauma, outcome assessment is mandated by
the American College of Surgeons in the USA and the
National Health Service (NHS) in England1,2. Both the
Trauma Audit and Research Network (TARN) in the UK
and the Trauma Quality Improvement Program (TQIP) in
the USA calculate a patient’s baseline predicted probabil-
ity of dying from their traumatic injuries3,4. Central to the

predicted probability of death is the extent of the anatom-
ical injury from the traumatic event.

Over the past 40 years, several methods of injury sever-
ity measurement have been proposed5–9, although the first
such method, the Injury Severity Score (ISS)10, remains
the most widely applied measure. The familiarity of the
ISS to clinicians and researchers is probably the greatest
contributor to its longevity. The ISS has functioned as a
stand-alone severity measure, and has also been incorpo-
rated into the leading models of trauma mortality, such as
the Trauma Injury Severity Score (TRISS) method11 and
TARN. Although it has remained the leading measure of
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Table 1 Characteristics of the 438 058 patients in the study

All patients Survivors Non-survivors P§

Total 438 058 (100) 422 128 (96⋅4) 15 930 (3⋅6)
Age (years)* 49⋅8 (49⋅8, 49⋅9) 49⋅5 (49⋅4, 49⋅6) 58⋅3 (58⋅0, 58⋅7) < 0⋅001¶
Men 284 764 (65⋅0) 273 655 (96⋅1) 11 109 (3⋅9) <0⋅001
Race/ethnicity < 0⋅001

White, non-Hispanic 277 794 (63⋅4) 267 350 (96⋅2) 10 444 (3⋅8)
Black, non-Hispanic 52 946 (12⋅1) 51 336 (97⋅0) 1610 (3⋅0)
Hispanic/Latino 66 976 (15⋅3) 65 004 (97⋅1) 1972 (2⋅9)
Race/other 40 342 (9⋅2) 38 438 (95⋅3) 1904 (4⋅7)

Alcohol present 56 203 (12⋅8) 54 437 (96⋅9) 1766 (3⋅1) < 0⋅001
Mechanism of injury‡ < 0⋅001

Blunt 268 605 (85⋅6) 258 574 (96⋅3) 10 031 (3⋅7)
Fall 159 053 (59⋅2) 152 407 (95⋅8) 6646 (4⋅2)
Motor vehicle crash 68 956 (25⋅7) 66 217 (96⋅0) 2739 (4⋅0)

Penetrating 32 867 (10⋅5) 31 761 (96⋅6) 1106 (3⋅4)
Firearm-related 9948 (30⋅3) 9117 (91⋅6) 831 (8⋅4)

Other mechanism 12 365 (3⋅9) 11 998 (97⋅0) 367 (3⋅0)
Payer status at discharge < 0⋅001

Medicare/Medicaid 142 424 (32⋅5) 135 832 (95⋅4) 6592 (4⋅6)
Private insurance 118 565 (27⋅1) 115 623 (97⋅5) 2942 (2⋅5)
Other insurance 33 850 (7⋅7) 32 422 (95⋅8) 1428 (4⋅2)
Uninsured 77 266 (17⋅6) 74 608 (96⋅6) 2658 (3⋅4)
Insurance status unknown 65 953 (15⋅1) 63 643 (96⋅5) 2310 (3⋅5)

Length of hospital stay (days)† 4 (2–7) 4 (2–7) 3 (1–8) <0⋅001#
ICU admission 138 837 (31⋅7) 125 697 (90⋅5) 13 140 (9⋅5) < 0⋅001

ICU length of stay (days)† 3 (2–6) 3 (2–6) 3 (1–7) <0⋅001#
Mechanical ventilation (days)† 3 (1–8) 3 (1–9) 2 (1–6) <0⋅001#

Injury Severity Score† 9 (5–17) 9 (5–16) 26 (17–34)
Probability of death from mortality prediction model†

TMPM 0⋅010 (0⋅005–0⋅024) 0⋅010 (0⋅005–0⋅023) 0⋅176 (0⋅041–0⋅453) < 0⋅001#
TARN 0⋅011 (0⋅005–0⋅042) 0⋅011 (0⋅004–0⋅036) 0⋅106 (0⋅042–0⋅187) < 0⋅001#

Values in parentheses are percentages unless indicated otherwise; values are *mean (95 per cent c.i.) and †median (i.q.r.). ‡Data were missing for 124 221
subjects and available for 313 837; of the 313 837 patients, 11 504 died. TMPM, Trauma Mortality Prediction Model; TARN, Trauma Audit and Research
Network. §Survivors versus non-survivors (χ2 test, except ¶Student’s t test and #Kruskal–Wallis test).

injury severity since it was introduced, ISS has four major
limitations. First, it is based on the Abbreviated Injury
Scale (AIS) severity values, which are determined by expert
consensus rather than being derived empirically. Second,
ISS accommodates only the worst injury from three sep-
arate body regions. As such, it cannot account for two
or more serious injuries in the same body region. Third,
many hospitals do not assign AIS codes to their patients’
injuries de novo. Instead, they convert the Clinical Mod-
ification of ICD-9 codes to AIS codes, thereby reducing
the accuracy of injury descriptions12. Finally, Kilgo and
colleagues13 have described the ISS as ‘choppy’, owing to
sharp increases or decreases with respect to mortality over
incremental increases in ISS values. Of note, TARN uses a
mathematical transformation of ISS to achieve better per-
formance of the model.

The Trauma Mortality Prediction Model (TMPM)
was developed as an empirically based alternative to
ISS without the limitations of ISS. TMPM incorporates
the patient’s five worst injuries as predictors of their

probability of death using a logistic regression model.
Previous work14–16 comparing TMPM with ISS and
ISS-based injury severity models showed that TMPM
was better able to predict mortality. The TMPM was
hypothesized to be a better predictor of survivors from
fatalities, given the limitations of the ISS.

Methods

After obtaining approval from the institutional review
board of Chandler Regional Medical Center, data from
the National Trauma Data Bank (NTDB) for the years
2011–2015 were used in a retrospective cohort study. The
NTDB contains data for nearly 7 million patient visits in
more than 900 hospitals. The NTDB data are anonymized
to ensure confidentiality of patients, physicians and partici-
pating hospitals17. The outcome of interest was in-hospital
death.

Patients were excluded if they were younger than 18 years
old, were burn victims, their discharge status (alive or
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Table 2 Area under the receiver operating characteristic (ROC) curve and Akaike information criterion values for the Trauma Audit and
Research Network and Trauma Mortality Prediction Model

AUROC value AIC value Hosmer–Lemeshow statistic

Derivation
TARN 0⋅841 (0⋅840, 0⋅841) 86 980 (86 942, 87 019) 2684⋅6 (681⋅3, 687⋅8)
TMPM 0⋅880 (0⋅880, 0⋅880) 74 509 (74 773, 74 545) 390⋅6 (89⋅4, 91⋅7)

Validation
TARN 0⋅845 (0⋅845, 0⋅846) 21 163 (21 143, 21 182) 153⋅0 (151⋅6, 154⋅3)
TMPM 0⋅882 (0⋅882, 0⋅882) 18 204 (18 186, 18 223) 32⋅4 (31⋅7, 33⋅1)

Values in parentheses are 95 per cent confidence intervals. AUROC, area under the receiver operating characteristic (ROC) curve; AIC, Akaike
information criterion; TARN, Trauma Audit and Research Network; TMPM, Trauma Mortality Prediction Model.

dead) was unknown, they were dead on arrival, or were
missing ISS values or AIS codes. Patients for whom the
TMPM probability of death could not be calculated were
also excluded. The reliability and quality of injury docu-
mentation in the AIS lexicon was essential to this study. To
this end, AIS codes were taken from the RDS_AISPCODE
files, as these were submitted by each hospital and least
likely to contain codes mapped from ICDMAP-90. Two
additional exclusion criteria were applied using methods
described previously14. Patients were excluded if they were
from hospitals that admitted fewer than 300 patients per
year, or if their hospital used less than 20 per cent of the
available AIS codes.

Comparisons of surviving patients with those who died
were performed using χ2 and Kruskal–Wallis test statis-
tics, as appropriate. Summary measures are presented
as means with 95 per cent confidence intervals where
appropriate. Median (i.q.r.) values were used for some
non-categorical data.

The anatomical injury component of the TARN model
was compared with TMPM. The TARN 2014 model
(Ps14) is based on the ISS transformed by applying frac-
tional polynomials. However, given the TARN Ps14 model
was developed for data defined by the TARN inclusion
criteria18, coefficients for the fractional polynomial trans-
formation of ISS were calculated de novo using NTDB data
for the present study. This model is as follows:

[
ISS1 =

(
loge (ISS∕10) − 0⋅19499

)
,

ISS2 =
(

loge (ISS∕10)2 − 0⋅03802
)]

probit

death ISS1 ISS2 = β1ISS1 + β2ISS2

+ constant = ISS1 × 0⋅762669 + ISS2

× 0⋅2587654 − 2⋅052421

TMPM uses the worst five anatomical injuries coded as
categorical variables along with two interaction terms15.
Coefficients for these seven TMPM terms were calculated
for the study data. For the present study, the AIS lexicon

was applied as the descriptor of anatomical injury. Of note,
however, the TMPM uses only the six-digit ‘predot’ code
to define injuries, and does not incorporate the AIS severity
value in its calculation of the probability of death. In
contrast, the ISS metric is based exclusively on the expert
consensus-based severity value10.

Using 80 per cent of the data, the fractional polyno-
mial transformation of the ISS was calculated for the
TARN model, and coefficients for TARN and TMPM
models were estimated. The models were validated using
the remaining 20 per cent of the data set.

Measures of model performance included area under
the receiver operating characteristic curve (AUROC) (C
statistic)19 and the Akaike information criterion (AIC)20.
The AUROC is a measure of sensitivity over 1− specificity.
This measures the ability of a model to discriminate sub-
jects having the outcome of interest (here mortality) from
those who do not. As AUROC values approach 1⋅0 the
model’s discrimination improves21. The AIC provides a
means of ranking competing models and of estimating
which model most closely approximates the hypothetical
‘true’ model of the phenomenon at hand. Generally, the
model with the lowest associated AIC value is preferred.
The Hosmer–Lemeshow goodness-of-fit test is a means of
assessing how well the model describes the data under anal-
ysis and informing the plausibility of the inferences drawn
from the model19. The Hosmer–Lemeshow test statistic
was calculated for each score with ten degrees of freedom
specified in the development sample and eight in the val-
idation sample. Calibration curves were constructed for
each model to assess monotonicity of the severity mea-
sures. Monotonicity describes incremental increases in the
observed outcome (here mortality) as a consistent function
of incremental increases in the injury severity values.

Observed mortality was plotted against expected mortal-
ity for TARN and TMPM. Of note, ISS has 44 unique val-
ues for predicted probability of mortality, so the anatomical
injury component of the TARN model also has 44 distinct
values. The TMPM produced 50 596 unique predicted

© 2018 BJS Society Ltd www.bjs.co.uk BJS
Published by John Wiley & Sons Ltd



A. Cook, T. Osler, L. Glance, F. Lecky, O. Bouamra, J. Weddle et al.

0·2

0 0·2 0·4

Expected mortality

a  TARN b  TMPM

0·6 0·8 1·0

0·4

O
bs

er
ve

d 
m

or
ta

lit
y

0·6

0·8

1·0

0·2

0 0·2 0·4

Expected mortality

0·6 0·8 1·0

0·4

O
bs

er
ve

d 
m

or
ta

lit
y

0·6

0·8

1·0

Fig. 1 Derivation of the calibration curve for the anatomical components of a the Trauma Audit and Research Network (TARN) and b
the Trauma Mortality Prediction Model (TMPM)

probability values in the derivation group and 174 974
such values in the validation group. Given this level of
granularity in the TMPM, the probabilities were grouped
into deciles and plotted against the observed mortality for
each decile. The 95 per cent confidence intervals for the
AUROC, AIC and Hosmer–Lemeshow test for each sever-
ity score were calculated using 1000 bootstrap samples of
the data set. There were no missing values for any model
in the study.

All statistical analyses were performed using Stata/MP™
version 14.2 (Stata Corporation, College Station, Texas,
USA).

Results

After applying the exclusion criteria, some 438 058 patients
were included in the study (Fig. S1, supporting informa-
tion). A total of 15 930 patients died (3⋅6 (95 per cent c.i.
3⋅6 to 3⋅7) per cent) during their hospitalization. The mean
age was 49⋅8 years, and non-survivors were older (58⋅3
(58⋅0 to 58⋅7) years). White men represented the largest
race–gender demographic group in the cohort (38⋅6 per
cent). Blunt mechanisms of injury were predominant (85⋅6
per cent). Of these, the majority were due to falls (59⋅2
(59⋅0 to 59⋅4) per cent), followed by motor vehicle crashes
(25⋅7 (25⋅5 to 25⋅8) per cent). Firearm-related injuries were
associated with the highest mortality (8⋅4 (7⋅8 to 8⋅9) per
cent). Median (i.q.r.) ISS and TMPM values for probability
of death were 9 (5–17) and 0⋅010 (0⋅005–0⋅024) respec-
tively (Table 1). The range of predicted probabilities of
death were 1⋅34× 10−6 − 1⋅0 and 0⋅002− 0⋅666 for TMPM
and TARN respectively.

There were 350 325 (80⋅0 per cent) and 87 733 (20⋅0
per cent) patients in the derivation and validation groups
respectively. There were no significant differences between
these two groups with respect to age, sex, race/ethnicity,
mechanisms of injury, median ISS, duration of stay in
hospital or the ICU, and rates of ICU admission and death.

AUROC values were used to compare discrimination
between survivors and non-survivors for the anatomical
injury scores. TMPM exhibited better discrimination
compared with TARN in the derivation group (0⋅880
(95 per cent c.i. 0⋅880 to 0⋅880) versus 0⋅841 (0⋅840
to 0⋅841) respectively). Similarly, AUROC was higher
for TMPM in the validation group (0⋅882 (0⋅882 to
0⋅882), compared with 0⋅845 (0⋅845 to 0⋅846)) for the
fractional polynomial transformation of ISS used by
TARN (Table 2).

The AIC was used to estimate each model’s proximity
to a theoretical and unknown ‘ideal’ probability of mortal-
ity model. Given a group of prediction models, the best
model is the one with the smallest AIC value. TMPM per-
formed better in comparison to the fractional polynomial
transformation of ISS used by TARN. Similarly, TMPM
demonstrated a lower value in the Hosmer–Lemeshow test
and is thus a better fit to the data in the present study
(Table 2).

Calibration curves were plotted for TMPM and TARN.
When the observed percentage mortality was plotted over
the proportion of mortality predicted by each of the 44 the
discrete TARN ISS values, a non-monotonic pattern was
observed in both the derivation and validation groups. It is
noteworthy that the maximum probability of mortality pre-
dicted by the fractional polynomial transformation of ISS
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Fig. 2 Validation of the calibration curve for the anatomical components of a the Trauma Audit and Research Network (TARN) and b
the Trauma Mortality Prediction Model (TMPM)

was approximately 0⋅6. This is likely due to the inherent
limitations of ISS as the mortality rate among patients with
ISS values of 75 in this study was 59⋅2 per cent (Figs 1
and 2).

Discussion

TMPM exhibited greater discrimination over a broader
range of injury severity than the ISS-based anatomical
injury component of TARN. Additionally, TMPM had
a lower AIC value, indicating that it approximates a
hypothetical ‘ideal’ model more closely. Moreover, the
goodness-of-fit for TMPM surpassed that of TARN. In
sum, the inherent limitations of the ISS, which have been
well documented in the literature13,14,22, are not overcome
by mathematical transformation.

Illness severity in injured patients is measured using
the probability of injury-related death. Unlike TMPM,
in which injury severity is estimated empirically using
the AIS so-called ‘predot’ codes, the basis for the injury
severity component of the TARN model is the AIS injury
severity based on expert consensus. Robust measures of
injury severity are essential for performance benchmarking
in order to improve outcomes in injured patients, and for
incentivizing higher-quality care in the NHS National
Tariff Payment System and the Merit-Based Incentive
Payment System and Value Based Purchasing from the
Centers for Medicare and Medicaid Services in the USA.
As anatomical injury is the fundamental element of trauma,
the credible measurement of injury severity is essential to
the evaluation of trauma care quality. In the present study
cohort, the AUROC was four percentage points greater for

TMPM. Thus, TMPM accurately predicted mortality in
589 more patients than did the injury severity component
of TARN. The cumulative weight of the findings suggest
that TARN should consider using TMPM to quantify
injury severity instead of relying on an ISS-based severity
measure.

Developed over 40 years ago, ISS was adopted as the
standard for measuring anatomical injury severity10. It is
the sum of the squared AIS severity values for the worst
injury in each of three separate body regions. AIS sever-
ity values are based on expert consensus, rather than being
derived empirically. This algorithm results in 56 combi-
nations of squared AIS severity scores that yield 44 pos-
sible unique ISS values. The ISS is relatively simple to
calculate, and it is this simplicity that is probably the key
to its longevity. However, the ISS is also known for its
non-monotonic nature due to steep peaks and valleys in
predicted mortality as the ISS value gets larger13. More
importantly, trauma care has advanced considerably in the
43 years since its publication, as evidenced by the limita-
tion of ISS in predicting death in the most severely injured
patients. The TARN mortality model applies a sophisti-
cated polynomial transformation of the ISS as the measure
of anatomical severity. This improved the performance
of the TARN model, as demonstrated by Bouamara and
colleagues in 200623.

The TMPM was developed in 2008 using an empirical
regression-based approach to estimate injury sever-
ity, instead of relying on the expert-based estimates
of injury severity used in ISS-based severity measures.
TMPM provides empirically derived probabilities of
death using the AIS lexicon. Previous work14 comparing
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TMPM to ISS, maximum AIS score, New Injury Sever-
ity Score and the ICD-9-based injury severity score
(ICISS) demonstrated that TMPM predicts trauma mor-
tality more accurately. Although somewhat technical in
approach, it is important to assess the adequacy of the
models before interpreting their results24. The present
analysis is the first study to compare the anatomical
component of TARN with TMPM, and find TMPM
performed best.

This study has several limitations. First, the NTDB
is not population-based but is built on a self-selected
group of trauma centres. Thus, the findings may not
be generalizable to all trauma and non-trauma centres.
However, a priori, there is no reason to believe that the
present finding of empirical measures of injury severity
outperforming measures of injury severity based on expert
consensus would be limited to this sample of injured
patients. Second, the complete TARN model includes
variables for age, Glasgow Coma Scale score and terms for
the Charlson Co-morbidity Index18,25,26. Thus, the present
results represent the anatomical injury components only,
and no inference should be made regarding the predictive
capabilities of the complete TARN model. However, the
basis for accurate risk adjustment in trauma mandates
accurate specification of the anatomical component of
injury severity, before including measures of physiological
derangement and co-morbidity.
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